Nat. Commun.综述:统计推断怎样连通网络科学中的数据与理论
导语
网络科学在不同研究领域的应用数量一直在迅速增加。令人惊讶的是,理论的发展和特定领域的应用往往是相互独立的,这就有可能造成理论进步与实践应用之间产生脱节。最近,发表于 Nature Communications 讨论了这一问题,并提出了保证更成功的应用和可重复的结果的相关建议。这篇文章强调以统计学为基础的方法论来解决网络科学中的挑战。这种方法允许人们用生成模型来解释观测数据,自然地处理内在的不确定性,并加强理论和应用之间的联系。
关键词:复杂网络,应用数学,统计推断
Leto Peel, Tiago P. Peixoto & Manlio De Domenico | 作者
刘志航 | 译者
刘培源 | 审校
邓一雪 | 编辑
论文题目:
Statistical inference links data and theory in network science
论文链接:https://www.nature.com/articles/s41467-022-34267-9
1. 绪论
2. 连接网络科学中的数据和理论
3. 模糊的数据质量
4. 表示方法的选择
5. 方法的适用性
6. 展望
1. 绪论
1. 绪论
2. 连接网络科学中的数据和理论
2. 连接网络科学中的数据和理论
方框1:网络科学中数据与理论的联系。一般来说,不应该把作为结果给出某种观测数据 D 的相互作用网络 A 与数据本身混为一谈。相反,我们需要认识到,数据 D 是测量过程 P(D∣A) 的结果,它以未见的网络为条件,但在某种程度上不可避免地与它脱钩。为了估计底层网络,我们需要执行一个推理步骤 P(A∣D),这需要包括我们对网络和数据如何产生的建模假设。由此产生的估计值会有一个不确定性,反映了实验设计、测量的准确性和特定重构问题的整体可行性。
3. 模糊的数据质量
3. 模糊的数据质量
图1:从噪声网络中测得的网络描述符(descriptors)及其重构。我们研究了两个经验网络:(a)高中生之间的友谊和(b)政治博客之间的超链接,用模拟的缺失边概率 p 和假的边概率
4. 表示方法的选择
4. 表示方法的选择
图 2:行动中的网络重构。经验食物网的重构(左上),来自临界温度下伊辛模型的 M=105 个样本。左图:(a)真实的原始网络,与通过使用图形化套索算法( LASSO);(b)推断稀疏精度(反协方差)矩阵得到的重构网络进行比较。在真实网络中不存在的边缘被染成红色。图形化的 LASSO 假设数据来自一个多变量的高斯,这显然是一个错误的规范。然而,即使这个错误的模型也比天真的相关阈值法表现得更好。用参考文献中的贝叶斯方法得到的结果[68],它与数据生成过程相匹配,因此提供了一个更准确的重构,显示在面板(c)。中图:(d)通过将超过阈值 t 的成对相关性视为网络中的边而得到的网络,如图例所示。右图:(e)描述符--从通过相关性阈值处理获得的网络中测得——作为相关性阈值 t 的函数。水平实线标志着为真实网络获得的值,水平虚线标志着用贝叶斯推断获得的值。右下角的图显示了真实网络和重构网络之间的杰卡德相似度(Jaccard index),在所有数字中,垂直线标志着具有最大杰卡德相似度的阈值。
5. 方法的适用性
5. 方法的适用性
图3:用零模型和生成模型评估群落结构。(a)N=100 个节点的完全随机网络的零模型的最大模块化值 Q 的分布。垂直线标志着该网络的修改版本所遇到的数值,如文中所述,该网络有一个嵌入的 6 个节点的完全子图。
图4:在不确定性下测量网络描述符。在许多实际问题中,网络的结构无法直接观察,而信号(如物理变量的时间过程)可以从其单元中测量。在应用了第二节中描述的有效的重构方法后,结果可以通过每个成对链接存在的边际概率以一种方便的方式进行总结,代价是损失了全部联合分布中的一些信息。请注意,这些概率的集合并不代表一个加权或有向网络,在相应的图上进行任何标准的网络分析都是错误的。事实上,在这种情况下,单个节点或整个网络层面的单一测量被概率分布所取代,编码测量一个特定值的可能性。例如,在一个大小为 N 的网络中,代替单个节点 i 的度数 ki 的是估计该节点具有度数k的概率 P(ki = k),k = 0,1,...,N。同样地,节点 i 的跨度 ci 被替换为该节点具有跨度 c 的概率 P(ci = c),这可能对应于多个局部配置而不是一个特定的配置,如图中右侧所示。这种概率分布可以在用于建立概率网络模型的贝叶斯推理框架内得到[106]。
6. 展望
6. 展望
参考文献
Newman, M. E. J. The structure and function of complex networks. SIAM Rev.45, 167–256 (2003). Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: Structure and dynamics. Phys. Reports.424, 175–308 (2006). Guimerá, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature433, 895–900 (2005). Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science (New York, N.Y.)322, 104–110 (2008). Costanzo, M. et al. The genetic landscape of a cell. Science327, 425–431 (2010). Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. National Acad. Sci.108, 7641–7646 (2011). Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci.13, 336–349 (2012). de Vico Fallani, F., Richiardi, J., Chavez, M. & Achard, S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosophical Transactions Royal Society B: Biological Sci.369, 20130521 (2014). Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science312, 431–433 (2006). Ings, T. C. et al. Ecological networks–beyond food webs. J. Animal Ecol.78, 253–269 (2009). Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evolution.1, 1–9 (2017). Rosato, V. et al. Modelling interdependent infrastructures using interacting dynamical models. Int. J. Critical Infra.4, 63–79 (2008). Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cade of failures in interdependent networks. Nature464, 1025–1028 (2010). Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and correlation properties of the internet. Phys. Rev. lett.87, 258701 (2001). Mahadevan, P. et al. The internet as-level topology: three data sources and one definitive metric. ACM SIGCOMM Computer Communication Rev.36, 17–26 (2006). Watts, D. J. A simple model of global cades on random networks. Proc. National Academy Sci.99, 5766–5771 (2002). Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science311, 88–90 (2006). Fowler, J. H. & Christakis, N. A. Cooperative behavior cades in human social networks. Proc. National Acad. Sci.107, 5334–5338 (2010). Stella, M., Ferrara, E. & De Domenico, M. Bots increase exposure to negative and inflammatory content in online social systems. Proc. National Acad. Sci.115, 12435–12440 (2018). Silk, M. J., Finn, K. R., Porter, M. A. & Pinter-Wollman, N. Can multilayer networks advance animal behavior research? Trends Ecol. Evolution.33, 376–378 (2018). Cai, W., Snyder, J., Hastings, A. & D’Souza, R. M. Mutualistic networks emerging from adaptive niche-based interactions. Nat. Commun.11, 1–10 (2020). Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. New England J. Medicine.357, 370–379 (2007). Gallotti, R., Valle, F., taldo, N., Sacco, P. & De Domenico, M. Assessing the risks of ?infodemics? in response to covid-19 epidemics. Nat. Human Behaviour.4, 1285–1293 (2020). Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature442, 259–264 (2006). Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature458, 1018–1020 (2009). Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science335, 973–977 (2012). Goh, K. I. et al. The human disease network. Proc. National Acad. Sci.104, 8685 (2007). Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and human disease. Cell144, 986–998 (2011). Halu, A., De Domenico, M., Arenas, A. & Sharma, A. The multiplex network of human diseases. NPJ Systems Biol. Applications.5, 1–12 (2019). Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. Royal Society Interf.2, 295–307 (2005). Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. National Acad. Sci.103, 2015–2020 (2006). Balcan, D. et al. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. National Acad. Sci.106, 21484–21489 (2009). Gómez-Gardenes, J., Soriano-Panos, D. & Arenas, A. Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks. Nat. Phys.14, 391–395 (2018). Zhang, J. et al. Changes in contact patterns shape the dynamics of the covid-19 outbreak in china. Science368, 1481–1486 (2020). Arenas, A. et al. Modeling the spatiotemporal epidemic spreading of covid-19 and the impact of mobility and social distancing interventions. Phys. Rev. X.10, 041055 (2020). Butts, C. T. Network inference, error, and informant (in)accuracy: a Bayesian approach. Social Networks.25, 103–140 (2003). Young, J.-G., Valdovinos, F. S. & Newman, M. E. J. Reconstruction of plant-pollinator networks from observational data. Nat. Commun.12, 3911 (2021). Zachary, W. W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropological Res.33, 452–473 (1977). Morstatter, F., Pfeffer, J., Liu, H. & Carley, K.Is the sample good enough? comparing data from Twitter’s streaming api with Twitter’s firehose. In Proc. of the International AAAI Conference on Web and Social Media, vol. 7 (2013). Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P. & Rosenquist, J.Understanding the demographics of Twitter users. In Proc. of the International AAAI Conference on Web and Social Media, vol. 5 (2011). Moody, J. Peer influence groups: identifying dense clusters in large networks. Social Networks.23, 261–283 (2001). Adamic, L. A. & Glance, N.The political blogosphere and the 2004 U.S. election: divided they blog. In Proceedings of the 3rd international workshop on Link discovery, LinkKDD ’05, 36-43 (ACM, New York, NY, USA, 2005). Goldberg, D. S. & Roth, F. P. Assessing experimentally derived interactions in a small world. Proc. National Acad. Sci.100, 4372–4376 (2003). Lü, L. & Zhou, T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics Applications.390, 1150–1170 (2011). Watts, D. J. & Strogatz, S. H. Collective dynamics of ’small-world’ networks. Nature393, 409–10 (1998). Taskar, B., Wong, M.-F., Abbeel, P. & Koller, D. Link prediction in relational data. Adv. Neural Inform. Proc. Sys.16, 659–666 (2003). Popescul, A. & Ungar, L. H.Statistical relational learning for link prediction. In IJCAI workshop on learning statistical models from relational data, vol. 2003 (Citeseer, 2003). Guimerá, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. National Acad. Sci.106, 22073 –22078 (2009). Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature453, 98–101 (2008). Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. Mixed Membership Stochastic Blockmodels. J. Mach. Learn. Res.9, 1981–2014 (2008). Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social networks. J. American Society Inform. Sci. Technol.58, 1019–1031 (2007). Newman, M. E. J. Network structure from rich but noisy data. Nat. Phys.14, 542–545 (2018). Peixoto, T. P. Reconstructing Networks with Unknown and Heterogeneous Errors. Phys. Rev. X.8, 041011 (2018). Young, J.-G., Cantwell, G. T. & Newman, M. E. J.Robust Bayesian inference of network structure from unreliable data. arXiv:2008.03334 [physics, stat] (2020). Newcombe, H. B., Kennedy, J. M., Axford, S. & James, A. P. Automatic linkage of vital records. Science130, 954–959 (1959). Fellegi, I. P. & Sunter, A. B. A theory for record linkage. J. American Statistical Association.64, 1183–1210 (1969). Pasula, H., Marthi, B., Milch, B., Russell, S. J. & Shpitser, I.Identity uncertainty and citation matching. In Advances in neural information processing systems15, 1425–1432 (2003). McCallum, A. & Wellner, B. Conditional models of identity uncertainty with application to noun coreference. Adv. Neural Inform. Process. sys.17, 905–912 (2004). Dong, X., Halevy, A. & Madhavan, J.Reference reconciliation in complex information spaces. In Proc.of the 2005 ACM SIGMOD international conference on Management of data, 85–96 (2005). Butts, C. T.Revisiting the Foundations of Network Analysis. Science. https://www.science.org/doi/abs/10.1126/science.1171022. (2009). American Association for the Advancement of Science. Whitney, H. Congruent graphs and the connectivity of graphs. American J. ematics.54, 150–168 (1932). Harary, F. & Norman, R. Z. Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo9, 161–168 (1960). Pearl, J. Causality: Models, Reasoning and Inference (Cambridge University Press, Cambridge, U.K.; New York, 2009), 2nd edition edn. Ulanowicz, R. E. & DeAngelis, D. L.Network analysis of trophic dynamics in south florida ecosystems. US Geological Survey Program on the South Florida Ecosystem 114 (2005). http://sofia.usgs.gov/projects/atlss/atlssabsfrsf.html. Dempster, A. P. Covariance selection. Biometrics157-175 (1972). Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics9, 432–441 (2008). Nguyen, H. C., Zecchina, R. & Berg, J. Inverse statistical problems: from the inverse Ising problem to data science. Adv. Phys.66, 197–261 (2017). Peixoto, T. P. Network Reconstruction and Community Detection from Dynamics. Phys. Rev. Lett.123, 128301 (2019). Rosenblum, M. et al. Reconstructing networks of pulse-coupled oscillators from spike trains. Phys. Rev. E.96, 012209 (2017). Guimerá, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv.6, eaav6971 (2020). Eagle, N. & (Sandy) Pentland, A. Reality Mining: Sensing Complex Social Systems. Personal Ubiquitous Comput. 10, 255–268 (2006). Cattuto, C. et al. Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLOS ONE.5, e11596 (2010). Stopczynski, A. et al. Measuring Large-Scale Social Networks with High Resolution. PLOS ONE.9, e95978 (2014). Publisher: Public Library of Science. Holme, P. & Saramäki, J. Temporal networks. Phys. Reports.519, 97–125 (2012). Gemmetto, V., Barrat, A. & Cattuto, C. Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect. Dis.14, 695 (2014). Voirin, N. et al. Combining High-Resolution Contact Data with Virological Data to Investigate Influenza Transmission in a Tertiary Care Hospital. Infect. Control Hospital Epidemiol.36, 254–260 (2015). Fournet, J. & Barrat, A. Epidemic risk from friendship network data: an equivalence with a non-uniform sampling of contact networks. Sci. Reports.6, 24593 (2016). Fournet, J. & Barrat, A. Estimating the epidemic risk using non-uniformly sampled contact data. Sci. Reports.7, 9975 (2017). Sapienza, A., Barrat, A., Cattuto, C. & Gauvin, L. Estimating the outcome of spreading processes on networks with incomplete information: A dimensionality reduction approach. Phys. Rev. E.98, 012317 (2018). Ciaperoni, M. et al. Relevance of temporal cores for epidemic spread in temporal networks. Sci. Reports.10, 12529 (2020). Cencetti, G. et al. Digital proximity tracing on empirical contact networks for pandemic control. Nat. Commun.12, 1655 (2021). Barrat, A., Cattuto, C., Kivelä, M., Lehmann, S. & Saramäki, J. Effect of manual and digital contact tracing on COVID-19 outbreaks: a study on empirical contact data. J. Royal Society Interface.18, 20201000 (2021). Colosi, E. et al. Screening and vaccination against COVID-19 to minimise school closure: a modelling study. Lancet Infect. Dis. 22,977–989 (2022). Leith, D. J. & Farrell, S. Coronavirus Contact Tracing: Evaluating The Potential Of Using Bluetooth Received Signal Strength For Proximity Detection (2020). Number: arXiv:2006.06822 arXiv:2006.06822 [cs, eess]. Gehlke, C. E. & Biehl, K. Certain effects of grouping upon the size of the correlation coefficient in census tract material. J. American Statistical Association.29, 169–170 (1934). Gallotti, R., Bazzani, A., Degli Esposti, M. & Rambaldi, S. Entropic measures of individual mobility patterns. J. Statistical Mechanics: Theory Experiment.2013, P10022 (2013). Gallotti, R., Louf, R., Luck, J.-M. & Barthelemy, M. Tracking random walks. J. Royal Society Interface.15, 20170776 (2018). Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis (Academic Press, Amsterdam; Boston, 2016), reprint edition edn. Korhonen, O., Zanin, M. & Papo, D. Principles and open questions in functional brain network reconstruction. Human Brain Mapping.42, 3680–3711 (2021). Zanin, M., Belkoura, S., Gomez, J., Alfaro, C. & Cano, J. Topological structures are consistently overestimated in functional complex networks. Sci. Reports.8, 1–9 (2018). Papo, D., Zanin, M., Martínez, J. H. & Buldú, J. M. Beware of the small-world neuroscientist! Front. Human Neurosci.10, 96 (2016). Arslan, S. et al. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage170, 5–30 (2018). Hoffmann, T., Peel, L., Lambiotte, R. & Jones, N. S. Community detection in networks without observing edges. Sci. Adv.6, eaav1478 (2020). Timme, M. Revealing Network Connectivity from Response Dynamics. Phys. Rev. Lett.98, 224101 (2007). Shandilya, S. G. & Timme, M. Inferring network topology from complex dynamics. New J. Phys.13, 013004 (2011). Timme, M. & adiego, J. Revealing networks from dynamics: an introduction. J. Physics A: ematical Theoretical.47, 343001 (2014). Nitzan, M., adiego, J. & Timme, M. Revealing physical interaction networks from statistics of collective dynamics. Sci. Adv.3, e1600396 (2017). adiego, J., Maoutsa, D. & Timme, M. Inferring Network Connectivity from Event Timing Patterns. Phys. Rev. Lett.121, 054101 (2018). adiego, J., Nitzan, M., Hallerberg, S. & Timme, M. Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun.8, 2192 (2017). Runge, J. et al. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun.6, 8502 (2015). Tumminello, M., Micciche, S., Lillo, F., Piilo, J. & Mantegna, R. N. Statistically validated networks in bipartite complex systems. PloS one6, e17994 (2011). Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature566, 373–377 (2019). Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv.5, eaau4996 (2019). Harnack, D., Laminski, E., Schünemann, M. & Pawelzik, K. R. Topological Causality in Dynamical Systems. Phys. Rev. Lett. 119, 098301(2017). Ye, H. et al. Equation-free mechanistic ecosystem foreting using empirical dynamic modeling. Proc. National Acad. Sci. United States of America112, E1569–76 (2015). Raimondo, S. & De Domenico, M. Measuring topological descriptors of complex networks under uncertainty. Phys. Rev. E.103, 022311 (2021). Stavroglou, S. K., Pantelous, A. A., Stanley, H. E. & Zuev, K. M. Unveiling causal interactions in complex systems. Proc. Natl. Acad. Sci.117, 7599–7605. http://www.pnas.org/lookup/doi/10.1073/pnas.1918269117 (2020). Wang, S. et al. Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks. Proc. National Acad. Sci. United States of America115, 9300–9305 (2018). Barzel, B. & Barabási, A.-L. Universality in network dynamics. Nature Physics advance online publication http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2741.html (2013). Barzel, B., Liu, Y.-Y. & Barabási, A.-L. Constructing minimal models for complex system dynamics. Nat. Commun.6, 1–8 (2015). Shen, Z., Wang, W.-X., Fan, Y., Di, Z. & Lai, Y.-C. Reconstructing propagation networks with natural diversity and identifying hidden sources. Nat. Commun.5, 4323 (2014). Han, X., Shen, Z., Wang, W.-X. & Di, Z. Robust reconstruction of complex networks from sparse data. Phys. Rev. lett.114, 028701 (2015). Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Revi E.69, 026113 (2004). Zhou, S. & Mondragón, R. J. The rich-club phenomenon in the internet topology. IEEE Commun. Lett.8, 180–182 (2004). Guimerá, R., Sales-Pardo, M. & Amaral, L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E.70, 025101 (2004). Bianconi, G., Pin, P. & Marsili, M. Assessing the relevance of node features for network structure. Proc. National Acad. Sci.106, 11433–11438 (2009). Peel, L., Larremore, D. B. & Clauset, A. The ground truth about metadata and community detection in networks. Sci. Adv.3, e1602548 (2017). Ehrhardt, B. & Wolfe, P. J. Network modularity in the presence of covariates. Siam Rev.61, 261–276 (2019). Cinelli, M., Peel, L., Iovanella, A. & Delvenne, J.-C. Network constraints on the mixing patterns of binary node metadata. Phys. Rev. E.102, 062310 (2020). Fortunato, S. Community detection in graphs. Phys. Reports.486, 75–174 (2010). Fortunato, S. & Barthélemy, M. Resolution limit in community detection. Proc. National Acad. Sci.104, 36–41 (2007). Good, B. H., de Montjoye, Y.-A. & Clauset, A. Performance of modularity maximization in practical contexts. Phys. Rev. E.81, 046106 (2010). Ghasemian, A., Hosseinmardi, H. & Clauset, A. Evaluating Overfit and Underfit in Models of Network Community Structure. IEEE Transactions on Knowledge and Data Engineering1-1 (2019). McDiarmid, C. & Skerman, F. Modularity in random regular graphs and lattices. Electronic Notes in Discrete ematics.43, 431–437 (2013). Reichardt, J. & Bornholdt, S. When are networks truly modular? Physica D: Nonlinear Phenomena.224, 20–26 (2006). Peixoto, T. P. Descriptive vs. inferential community detection: pitfalls, myths and half-truths. arXiv:2112.00183 [physics, stat] (2022). ArXiv: 2112.00183. Karrer, B. & Newman, M. E. J. Stochastic blockmodels and community structure in networks. Phys. Rev. E.83, 016107 (2011). Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E.84, 066106 (2011). Peixoto, T. P. Bayesian Stochastic Blockmodeling. In Advances in Network Clustering and Blockmodeling, 289–332 (John Wiley & Sons, Ltd, 2019). Young, J.-G., St-Onge, G., Desrosiers, P. & Dubé, L. J. Universality of the stochastic block model. Phys. Rev. E.98, 032309 (2018). Newman, M. E. J. Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys.Rev. E.94, 052315 (2016). White, H. C., Boorman, S. A. & Breiger, R. L. Social structure from multiple networks. i. blockmodels of roles and positions. American J. Sociology.81, 730–780 (1976). Price, Dd. S. A general theory of bibliometric and other cumulative advantage processes. J. American Society Inform. Sci.27, 292–306 (1976). Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: First steps. Social Networks.5, 109–137 (1983). Nowicki, K. & Snijders, T. A. B. Estimation and Prediction for Stochastic Blockstructures. J. American Statistical Ass.96, 1077–1087 (2001). Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences99, 7821 –7826 (2002). Schaub, M. T., Delvenne, J.-C., Rosvall, M. & Lambiotte, R. The many facets of community detection in complex networks. Appll. Network sci.2, 4 (2017). Cecchini, G. & Pikovsky, A. et al. Impact of local network characteristics on network reconstruction. Physical Review E.103, 022305 (2021). MacMahon, M. & Garlaschelli, D. Community Detection for Correlation Matrices. Phys. Rev. X.5, 021006 (2015). Masuda, N., Kojaku, S. & Sano, Y. Configuration model for correlation matrices preserving the node strength. Phys. Rev. E.98, 012312 (2018). Medaglia, J. D., Zurn, P., Sinnott-Armstrong, W. & Bassett, D. S. Mind control as a guide for the mind. Nature Human Behaviour.1, 1–8 (2017). Avella-Medina, M., Parise, F., Schaub, M. & Segarra, S. Centrality measures for graphons: Accounting for uncertainty in networks. IEEE Transactions on Network Science and Engineering (2018).
(参考文献可上下滑动查看)
复杂科学最新论文
推荐阅读
Donald Rubin的因果推断学术贡献:超出统计学范畴的划时代影响 因果推断:现代统计的思想飞跃 统计物理、无序系统和神经网络 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!